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1. IN-I ROI)UC-l  ION

1 he precipitation radar planned for the ‘1 rop-
ical Rainfall Measuring Mission (“l RMM) will be the
first of its kind to measure vertical rainfall  di~tribu.
lions from space. ‘1 he 1 f{MM  radar will scan d 20°
across the nadir track. ‘1 he rarrge-gated  backscat-

tering  powers over the entire scan swath will be mea-
sured, classified (rain versus no- rain), averaged, and
processed to derive the rainfall rates, With this ob-
servation scheme, there are two major reasons why it
is important to know the rain-perturbed backscatter-
ing coefficient of the surface background (Zro), 1 irst,
as the radar scans away from nadir, the return sig-
nals within the same pulse volume will include sig-
nals backscattered from both the rain and the sur-
face background. Fly knowing tiO, the surface return
can be removed and the rain rate near the surface

can then be deduced. With the conventional aP-
proach, 50 WOLlld  be approximated by the rain-free
coefficient co obtained either in the vicinity of the

rainy area or from prior observations of the same
area during dry periods, however, the error associ-
ated with such an approximation may significantly
degrade the accuracy of the inferred rainfall intensi-
ties. It is therefore desirable to determine 60 directly
from the radar measurements acquired in the rainy
area.

In this paper, we discuss a new algorithm
for estimating tio as well as the reflectivity and atten-

uation coefficients in the rain above. 1 his algorithm
is intended for use with single-frequency range–gated
radar echo measurements such as those acquired by

the 1 RMM  radar. Based on the expected ‘I flMM
radar performance characteristics, speckle is likely to
be a major source of “noise” in the radar backscatter
n]easurerrlents,  and we derive a maxirnunl-  likelihood
estimator to minimize the speckle--induced errors in
the retrieval of the surface backscattering  coefficient.
In addition to stochastic sources of error, the fact

that only one frequency is available causes dcirTL/lIirI-
is fir ambiguities to be present in the radar returns.

We account for the stochastic and deterministic anl-
biguities  in t}le retrieval of the rain characteristics by
using an optimal non-linear filtering approach.

“1 he details of the problem and the algo
rithms we derive are described in the {ollowing  sec-
tions. ‘1 his researc}l was carried out at the Jet [’ropu-
sion 1 aboratory,  California Institute of ‘1 ethnology,
under contract with the National Aeronautics and
Space Administration,

2. 1 }1[ INVL  RS1ON PROR1 f M

We consider the situation pictured in fig-
ure 1, Specifically, calling the radar beam incidence
angle ~) and the range resolution dr, we assume that
we receive J pieces of rain–only data, namely ‘the
echo powers qj from ranges IL’s - j d?.,
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11 z rain reflectivity coefficient

k : rain attenuation coefficient

A = (known gain)  (cal ibrat ion constant)

[ij  = 0.7 lo~;(l  O) (1/0 -  j  d,)

)? , thermal noise variance

[Ij , speckle variance at range 1{[)  - j ([1”



follc,wed  by N pieces of surface- cluttered data, namely

the echo powers ]/i from ranges IL’{)  -I z’ d?,

1)1 Z echo from range A’o  -I id?’, 0 < r’ < N - 1

C’ (’r/’’lIt’-  “k ‘1 6(rJJ~C- ‘k ‘1 >;2) \“i (2)

where, this time,

~o = rain- modified surface backscatterin.g  coeft

ji,}li = beam-filling-dependent gains

{Ii c 0.2 log(l O) . (lt’cI -1 r’ d7)

/? = o.210g(lo)  . ]/r)
~~ , speckle variance from range lL’o -1 i d?)

Since we have J -I N equations in three unknowns,

one would expect the problem of determining ?/, 60
and k to be easy to solve. }Iowever,  the data are

contaminated by speckle noise, whose i~ariance can
be of the sarrle magnitude as the parameters we need

to estimate. 1 he best approach is to try to nlake a
statistically optimal estimate.

Specifically, assuming that each [Jj is the
arithmetic average of the squared magnitude of Al
independent complex standard normal randon]  vari-
ables, where Al is the number of radar pulses trans.
mitted  along one fixed scan angle (Al v (iO for
1 RMM), the probability density function ~ for each
f.Jj is

j(?f) : jtf~!41’)fif -  :_c- MU
(Al - 1)!

(3)

It follows from the equation for ~ that the rr~aximum
likelihood estimator for I), k given the data qj is ob-

tained by looking for the values O, ~, of ~), k which
minimize the quantity

w h e r e  lj(?l, k) = 71 Ar  - ‘,~ -I >;2. o n c e  t h e  m a x -

imum likelihood estimates fi, ~ are determinecl,  one
nlust similarly look for the value of 6[1 which mini-

mizes the likelihood function

w h e r e  ~;i(fi,tic,, k) : fiji~- “i -1 tioli:C  - “k -1 };2,

“[ his would in principle determine the optimal esti-

mate for @o. Yet, in order to derive this first- cut
algorithm, we have made one implicit assumption
that is not realistic,

Indeed, note that we have not specified the
values of J or N. In fact, N is completely deter-
mined by the geometry, }Iowever,  3 can a priori be

arbitrary. In reality, we cannot allow 3 to be too
large, for we would then be assuming that 7) and k

are constant over a long slant distance J CIV, a gen-
erally unjustifiable hypothesis. But  if J is small, we
would be left with too little data to beat down the
speckle noise, We must therefore look for a way to
estimate II and k in the general case where they are
not a priori assumed to be constant,

We are thus naturally led to assume that

k is in fact a function of range, k = k(!), which
we must determine using the measured echo power

clata q. So far, we had been writing g as a discrete
variable. For consistency, we now represent the rain

echo power data as a function of continuous range

q(t).  Rather  ttlan introduce yet another unknown
function ?)(T), we assume a power- law k-lj relation
)) = & k~,  and set out to estiniate  t}le unknowns

/,(t),/i,T given the data q(r),

Since k is now an unknown junciion, it
would be quite unwieldy to discretize  it and attempt
a rnamximurn  likelihood approach. On the other
hand, we can consider it a stochastic process, with
the range variable r playing the role of time, then try
to use optimal stochastic filtering techniques. in-
deed, if we represent the relationship between the
data q and the unknowns k,6, and -y by the equa-

tion

q(r) : (A r$ k(r)? 1 0 -  “2’(’)  -1 w) . u(r) (6)

where c(r)  : J; k(f) d{ is the cumulative attenua-
tion, and if we make some simple assumptions about
the dynamics of k, i.e. about its behavior as a func-
tion T, we should be able to derive the differential
equation governing the evolution with t’ of the prob-

ability density function ?Ir(k,6,  -y) of k,r$, y at range
r, conditioned on the data {q(t), t < r]. F urther-
more, if our n-rodel for the dynamics is indeed simple,
we might be able to solve the differential equation

explicitly, thus obtaining an algorithm for estimat-
ing L’(r),  6, and ~. We would then be able to use

~ = k(lio) and o : r$k(}t{,)y as our estin]ates
for the near-surface reflectivity and attenuation co
efficient in order to find the nlaxirnurn-like  lihood
estimate for &o as described earlier.

‘[ bus, as sc,on as we settle  on a simple
moclel for the dynamics of k, we should be able to

write down the corresponding optimal algorithm to


